Are you familiar with our industrial-grade accredited inspection services?

- Accredited laboratory in line with DIN EN ISO / IEC 17025, to qualify and validate new non-destructive testing (NDT) processes for industrial applications
- Accelerated time-to-market and opportunity for qualified, norm-compliant deployment in industrial applications as well as for complete new in-house developments or custom adaptation of innovative NDT technologies, even in fields where norms have not been established
- Certification of the corresponding quality management system in accordance with DIN EN ISO 9001

Nondestructive inspection of press-hardened body parts using 3MA

3MA – Press Hardening
Reinforcement elements of the body are made of high-strength steels. This allows to minimize the vehicle weight and with it the fuel consumption while ensuring a maximum of crash-safety of the passenger cabin. To manufacture these components, producers and suppliers in the automotive industry increasingly rely on the so-called press-hardening, as it is particularly resource-friendly and cost-effective.

In this process, the plates to be formed are heated in a continuous furnace to approximately 950 °C. By a transfer tool (e.g. a robot) the then glowing red sheets are placed in a press, in which a special, water-cooled tool is installed. While the press is closing, the material is transformed by the tool. Simultaneously, within a few seconds, the plate is deprived of its heat. The rapid cooling results in a martensitic microstructure in the steel, which ensures high strength and hardness of the material.

To assess the manufacturing quality, the components are randomly tested with regard to their mechanical and technological characteristics. To evaluate the production quality hardness (HV10), tensile strength (Rm), yield strength (Rp0.2), breaking strain (A50) and uniform strain (AG) of the samples are determined. These destructive tests are time-consuming and expensive.

The use of 3MA requires a previous calibration. Based on a multiple regression analysis approximating functions are determined that relate the targeted quality features to the 3MA measures.

To perform the calibration components were taken from the production line and, in addition, special procedure samples were prepared. In this way a set of calibration samples was created which covers the entire range of targeted variables but also the expected variation range of various disturbances (e.g. temperature, thickness, material batch). After calibration the 3MA inspection technique was validated for this special application.