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Abstract: Advanced materials such as continuous carbon fiber-reinforced thermoplastic (CFRP)
laminates are commonly used in many industries, mainly because of their strength, stiffness to
weight ratio, toughness, weldability, and repairability. Structural components working in harsh
environments such as satellites are permanently exposed to some sort of damage during their lifetimes.
To detect and characterize these damages, non-destructive testing and evaluation techniques are
essential tools, especially for composite materials. In this study, artificial intelligence was applied
in combination with infrared thermography to detected and segment impact damage on curved
laminates that were previously submitted to a severe thermal stress cycles and subsequent ballistic
impacts. Segmentation was performed on both mid-wave and long-wave infrared sequences obtained
simultaneously during pulsed thermography experiments by means of a deep neural network. A
deep neural network was trained for each wavelength. Both networks generated satisfactory results.
The model trained with mid-wave images achieved an F1-score of 92.74% and the model trained
with long-wave images achieved an F1-score of 87.39%.

Keywords: composite materials; infrared thermography; deep learning; damage segmentation; curve
shaped laminates

1. Introduction

Composite materials (CM) are a class of advanced materials that are formed by
the combination of two or more constituents. Usually they are formed by a matrix and
a reinforcement. The combination of these two materials brings improved mechanical
properties to the final assembly in terms of stiffness, strength, weight (lightness), high
fatigue life flexibility, durability, and economical competitiveness [1–3]. Today, CM are
used in the industry as replacements of other classical materials. They are widely used in
transportation—including automotive, aeronautics and marine industries—architecture
and civil infrastructure, renewable energy technology, and so on.

In the aerospace industry, structural components operating in harsh environments
are now built with carbon fiber-reinforced thermoplastic (polyphenylene sulfide–PPS–C)
matrix composite thin laminates (e.g., NASA’s Soil Moisture Active Passive—SMAP—
satellite (https://smap.jpl.nasa.gov/)). For structural laminated composite materials,
thermal and/or mechanical cyclic stresses followed by impact loading give rise to damages
such as matrix cracking, fiber breaks, interply delamination, and fiber/matrix debonding.
Low earth orbit (LEO) geostationary satellites can experience temperatures as low as
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−190 °C in the eclipse region (Earth’s shadow), and up to 150 °C in the sunlight region
(i.e., temperature range approaching 300 °C), so that repeated thermal shocks can still
worsen the conditions faced by composite laminates permanently exposed to low-energy
impact events by micrometeoroids [4–6]. Therefore, non-destructive testing and evaluation
(NDT&E) techniques are essential to ensure structural safety, reliability, and operational
life [7–13].

A large number of experimental techniques have been proposed in the last decades
to assess the internal structure of CM. NDT&E can be grouped in different inspection
categories, namely, visual inspections, imaging techniques, electromagnetic-field-based
testing, acoustic-wave-based inspections, and optical techniques.

Among the most valuable NDT&E methods for the inspection of CM, infrared ther-
mography (IRT) [14] holds a prominent position by providing fast surface inspection, easy
deployment, safety, and relatively low cost. Thermal methods for NDT&E are based on the
principle that heat flow in a material is altered by the presence of some types of anoma-
lies [15]. Usually a heat pulse is used to start this heat flow. A heat pulse can be considered
as the combination of several periodic waves at different frequencies and amplitudes. After
the thermal front comes into contact with the specimen’s surface, a thermal front travels
throughout the specimen. As time elapses, the surface temperature will decrease uniformly
for a piece without internal flaws. On the contrary, subsurface discontinuities (porosity,
delaminations, fiber breakage, etc.), can be considered as resistances to heat flow that
produce abnormal temperature patterns at the surface, which can be detected with an
infrared (IR) camera. The imaging or study of such thermal patterns is known as IRT.

IRT inspection of a structure usually produces a lot of data. Thousands of images
can be acquired during one single experiment. These data must be processed to extract
knowledge about the inner structures of composite components. With this regard, machine
learning can play a key role in defect and damage assessment [16–20]. Deep learning
is a machine learning approach that is based on neural networks. In principle, a deep
and complex network allows multiple data processing steps aimed at the generation of
consecutive representations of the inputs in feature spaces of increasing meaning. Besides,
as deep models are always seen as “black box” because their lack of transparency, certain
methods should be performed to reveal the data processing operations of the models.

In this paper, curved carbon fiber-reinforced thermoplastic matrix laminates are in-
spected by means of IRT. The specimens were submitted to different numbers of thermal-
shock cycles and then impacted with a projectile with kinetic energy resembling that
exhibited by micrometeorites. Each specimen was individually inspected using pulsed
thermography (PT). IR raw sequences were then processed with a known IR processing
method called principal component thermography (PCT) towards damage detection and
characterization. Images obtained with PCT were used as ground truth for a supervised
train of a convolutional neural network. Raw sequences with sample normalization oper-
ation were utilized as input for the network which segments impact damages present in
the specimens.

The reminder of this paper is organized as follows: Section 2 describes the tested
specimens, inspection technique and applied classification models. Results are presented
in Section 3, followed by discussion in Section 4. Finally, conclusions and future work are
provided in Section 5.

2. Materials and Methods
2.1. Inspected Specimens

TorayTM (formerly TenCateTM) CetexTM TC1100 is a high-end cost-effective laminate
reinforced with 5 HS, T300JB carbon fibre woven pre-impregnated with thermoplastic
semi-crystalline polyphenylene sulfide polymer (hereafter PPS-C laminate) for excellent
mechanical properties and outstanding chemical and solvent resistance. Six [0/90] plies
were hot pressed for a 2 mm-thick, [0/90]3S laminate array. The final laminate is supplied
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with a thin glass fiber-reinforced PPS matrix top layer to protect a partly metallic assembly
against galvanic corrosion. Basic properties are listed in Tables 1 and 2.

Table 1. Basic physical properties of neat resin.

Property Value

Specific gravity 1.35 g/cm3

Tg (glass transition) 90 °C
Tm (melting) 280 °C

Tp (processing) 300–330 °C

Table 2. Basic physical properties of individual pre-impregnated ply.

Property Value
Fibre areal weight 280 g/m2

Weight per ply 496 g/m2

Resin content by weight 43%
Consolidated ply thickness 0.31 mm

Density 1.55 g/cm3

Width 1270 mm

Test specimens with in-plane dimensions of 150 × 45 mm were carefully machined
from the PPS-C laminate and subsequently curved (curvature radius 120 mm) at ambient
temperature. The curve-shaped specimens were permanently stabilized using metallic
clamps and subjected to thermal shock cycles. For this purpose, they were repeatedly
immersed in boiling water (100 °C) and liquid nitrogen (−196 °C), respectively. They re-
mained immersed for 3 min in each liquid medium to guarantee thermal stabilization. Once
they were retrieved from the boiled water contained, they were immediately transferred
to the liquid nitrogen one, and vice-versa, to permanently warrant harsh thermal-shock
conditions; 150, 300, and 500 thermal-shock cycles were applied to different specimens aim-
ing at simulating thermal conditions experienced by geostationary satellites operating in
low-earth orbit (LEO) environment. It is worth mentioning that some specimens were not
heat-treated. Finally, the test coupons were transversely impacted (Figure 1) with air-driven
(CBCTM 5.5 Standard air rifle) caliber 5.5 mm cylindrical lead projectile weighting 1.6 g,
traveling at a speed of 250 m/s under ambient temperature. Estimated impact energy was
50 J, which approaches typical energies for simulating micrometeoroid collisions [21] that
may lead to severe damage to thin laminate composites. It is worth noticing that some test
coupons were not impacted. A total of eight specimens were tested in this work. Figure 2
shows a curved specimen previously submitted to 300 thermal-shock cycles followed by
impact. Table 3 lists all inspected specimens.

Figure 1. Schematic of the transverse impact test.
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(a) (b)

(c) (d)

Figure 2. Curved specimen impacted after 300 thermal-shock cycles: (a) frontal view, (b) lateral view,
(c) impact detail in the frontal view, and (d) impact detail in the lateral view.

Table 3. Characteristics of curved specimens inspected by IRT (y: yes, n: no).

Specimen Thermal Shock Cycles Impacted (y/n)

1 150 y
2 150 n
5 300 y
6 300 n
11 500 y
12 500 n
13 0 y
15 0 n

2.2. Infrared Thermography

NDT&E has been defined as comprising those methods used to examine or inspect
a part, material, or system without impairing its future usefulness [14]. IRT and thermal
methods for NDT&E are based on the principle that heat flow in a material is altered
by the presence of some types of anomalies. These changes in heat flow cause localized
temperature differences in the material surface. Some advantages of IRT are fast surface
inspection, ease of deployment, and safety. In the active IRT approach, an external heat
(or cold) source is used to produce a thermal contrast between the feature of interest and
the background. There are some heat sources that could be used for this purpose. Here,
an optical energy source was used.

To inspect the specimens, an IR camera equipped with a circular flash acting as an
optical energy source was used, as shown in Figure 3. Both camera and optical energy
source were placed in before the target, i.e., reflection mode, and a short flash pulse
was triggered while the camera captured a sequence of images during some seconds.
This inspection approach is called pulsed thermography (PT) [22]. A Thermosensorik
QWIP Dualband 384 infrared dual-band camera was employed working simultaneously
within the 4.4–5.2 µm (mid-wave infrared-MWIR) and 7.8–8.8 µm (long-wave infrared-
LWIR) bands. A Xenon round flash with maximal 6 kJ was used. A 10 µs flash (3 kJ) was
fired while the infrared camera started recording a 7 s long video at a frame rate of 150 fps,
so that two raw sequences (respectively MWIR and LWIR ranges) were registered. The
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distance between the camera/flash and the inspected specimen was approximately 29 cm
and the surfaces of the specimens were not damaged during the inspections. The entire
set-up was surrounded by dark glass where the ambient temperature was 22.3 °C and
ambient humidity around 42%. Emissivity of the inspected surface was considered to be
around 0.95. All experiments were performed in the same day.

Figure 3. Reflection mode PT set-up used in this study.

2.3. Thermal Data Analysis

MWIR and LWIR sequences having 1050 images of 288 × 384 pixels are available
for each specimen. Examples of a MWIR sequence are provided in Figure 4. Figure 4a
shows the raw cold image, i.e., the image before flash pulse; Figure 4b shows the image
which corresponds to 0.25 s after the flash pulse; and Figure 4c shows the image which
corresponds to 3 s after the flash pulse. The ballistic impact damage is clearly differentiated
from sound areas in the raw image shown in Figure 4b. Two points, one on the impact
area and another on a sound area (red and blue, respectively), are plotted on these images.
Temperature profiles of these two points are shown in Figure 4d. MWIR and LWIR raw
sequences were used to train and test two different deep learning models for impact
damage segmentation (one spectral band for each model).

PT is probably the most extensively investigated approach because it is fast (from a few
seconds for high conductivity materials to several seconds for low conductivity materials)
and easy to deploy. Raw PT data, however, is difficult to handle and analyze. Therefore,
some damage could not be identified if one analyzes only the raw IR sequence. There are a
great variety of processing techniques available to enhance the subtle IR signatures.

A very simple approach is a thermal contrast technique. Thermal contrast is a basic
operation that despite its simplicity is at the origin of most of the PT analysis. Various
thermal contrast definitions exist [14], but they all share the need to specify a sound area
Sa: a non-defective region within the field of view. The absolute thermal contrast ∆(t):

∆(t) = Td(t)− TSa(t) (1)

where T(t) is the temperature at time t, Td(t) is the temperature of a single pixel or the
average of a group of pixels, and TSa(t) is the temperature at time t for a sound area. No
defect can be detected at a particular time t if T(t) = 0.

Another processing technique proposed in [23] is called principal component ther-
mography (PCT). It relies on singular value decomposition (SVD), which is a tool to extract
spatial and temporal data from a matrix in a compact manner by projecting original data
onto a system of orthogonal components known as empirical orthogonal functions (EOF).
By sorting the principal components in such a way that the first EOF represents the most
characteristic variability of the data, the second EOF contains the second most important
variability, and so on.
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The SVD of a MxN matrix A, where M > N, can be calculated as follows:

A = URVT (2)

where U is a M× N matrix, R is a diagonal N × N matrix (with singular values of A present
in the diagonal), and VT is the transpose of a N × N orthogonal matrix (characteristic time)
as proposed in [23].

(a) (b)

(c)
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Figure 4. Raw MWIR data for specimen 5: (a) before flash pulse, (b) at 0.25 s, (c) at 3 s, and (d) temper-
ature profiles of impacted (red) and sound (blue) regions (regions are also marked in the raw images).

Hence, in order to apply the SVD to thermographic data, the 3D thermogram matrix
representing time and spatial variations has to be reorganised as a 2D M× N matrix A. This
can be done by rearranging the thermograms for every time as columns in A, in such a way
that time variations will occur column-wise while spatial variations will occur row-wise.
Under this configuration, the columns of U represent a set of orthogonal statistical modes
known as EOF that describe the data spatial variations. On the other hand, the principal
components (PCs), which represent time variations, are arranged row-wise in matrix VT .
The first EOF will represent the most characteristic variability of the data, the second EOF
will contain the second most important variability, and so on. Usually, original data can be
adequately represented with only a few EOFs. Typically, an IR sequence of 1000 images
can be replaced by 10 or less EOFs.

In this study, to correctly label the data for training, PCT was applied for defect
visualization enhancement. Figure 5 shows the second components obtained for specimens
5 (impacted) and 6 (non-impacted) on MWIR data. Even though the first EOF brings
the most characteristic variability of the data, it does not brought useful information for
damage detection. Therefore, second and third EOFs were used. In general, for PT, the
first EOF is affected by the flash pulse being slightly saturated. Thus, second and third
EOFs are usually used for the purpose of damage detection. In Figure 5b we can confirm
that there was no damage in the sound specimen, as was expected. The entire extent of
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the impact damage is clearly visible in Figure 5a. Results shown in Figure 5a are from the
sequence of images shown in Figure 5c. Figure 5c,d shows results for the same specimen
but with images from the LWIR data sequence. Impact damage defect shape and position
were considered from these images, i.e., PCT results, for network labeling target classes.
Other defects are visible in the PCT images, such as cracks and delaminations. In this work,
the goal was to segment only the impact damage region.

(a) (b)

(c) (d)

Figure 5. PCT second components obtained from: MWIR sequences, (a) specimen 5 (impacted) and
(b) specimen 6 (non-impacted); and LWIR sequences, (c) specimen 5 (impacted) and (d) specimen 6
(non-impacted).

2.4. Artificial Intelligence Tools Applied in Infrared Thermography

In the last decade, several groups studied the use of artificial intelligence tools for
NDT&E. Oliveira et al. presented a transfer learning case in [24] with the application of a
U-Net convolutional neural network, which was optimised for processing medical images,
for segmenting impact damages in infrared phase images of carbon fibre reinforced plastic
plates, which were acquired using optical lock-in thermography. Bang et al. [25] proposed
a framework for identifying defects in composite materials by integrating a thermography
test with a deep learning technique. A dataset of thermographic images of composite
materials with defects were collected from literature and were used for training the system
to identify defects from given thermographic images. The identification algorithm adopts
faster region based convolutional neural network (RCNN) for identifying an object, i.e.,
defect(s) in this case, by employing an automatic learning feature from the available data.
In [26], Marani et al. developed a complete approach for the automatic detection and
classification of defects in composite materials for aeronautics. They used a decision forest
made of 30 trees trained on the input image; it was able to classify three classes of surface
areas (pristine, surface defects, and internal defects) with high values of both standard
accuracy and balanced accuracy.
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Convolutional Neural Networks

Convolutional neural networks (CNNs), as an important area of deep learning, have
leveraged tremendous improvements in image classification [27–29] and image segmenta-
tion [30–32]. However, their applications in infrared images have not been well explored
yet. Unlike visible detectable images, which can be easily obtained, infrared data are em-
ployed to characterize objects through very expensive equipment. Moreover, CNNs contain
a large number of parameters and have strong ability for non-linear predication. Therefore,
this approach demands plenty of training data samples to facilitate good generalization.
There are several approaches available in the literature for image segmentation and image
classification. Some of them are briefly described next.

ResNet: It stands for deep residual network [29]. As the name indicates, it introduces
what is called residual learning. In general, in deep CNNs several layers are stacked and
trained to learn features. In residual learning, instead of learning features, the network
learns residues. The residue is actually a subtraction of the input of the current layer from
the output of this layer. ResNet learns residues using shortcut connections that link the
nth layer to the n + 1th layer. Literature results have shown that it is easier to train ResNet
than classical CNNs. ResNet can be configured up to over 1000 layers.

DenseNet: It is a logical extension of ResNet having as a fundamental building
block the concept of residue connections. In contrast with ResNet, DenseNet proposes to
concatenate the previous layers instead of using a summation. DenseNet [33] connects
each layer to every other layer in a feed-forward fashion. While traditional CNN with
L layers have L groups of connections—a group between each layer and its subsequent
layer—DenseNet has L(L+ 1)/2 groups of connections. In summary, for each layer, feature
maps of all predecessor layers are used as input, and its output map is used as input to
all subsequent layers. DenseNet used can be considered a small CNN having 8 millions
of parameters.

PSPNet: One of the strategies used to improve the performance of semantic seg-
mentation is the use of context clues [34]. However, the primary issue for current fully
convolutional networks (FCN) based models is the lack of a suitable strategy to use global
scene category clues [35]. It is essential to the defects of the context because of the features
around. In this way, we were motivated to use an architecture based on spatial pyra-
midal pooling such as the PSPNet network [35]. Given an input image, PSPNet uses a
pre-trained ResNet [29] with the dilated network strategy [36] to extract the feature map.
The final feature map size is 1/8 of the input image. Applying the 4-level pyramid, the
pooling kernels cover the image. They are combined as the global, concatenate the previous
with the original feature map, accompanied by a convolution layer to produce the final
prediction map.

U-Net: There is consensus that successful training of a CNN requires many thousands
of training samples. However, getting thousands of training images of the defects labeled
is not a simple task. We need architectures that require few training images and provide
good results. In this case, U-Net [30] is highlighted because it introduces skip connections
between the downsampling step and the upsampling step, which allows the latter step
to use the features from earlier steps. During U-Net’s training, it uses strategies like data
augmentation to apply the labeled images efficiently. As a result, it provides superior
performance when segmenting the medical images.

2.5. Proposed Approach
2.5.1. Network Architecture

The network architecture used in this work is shown in Figure 6. The network consists
of eight steps: the first three steps are downsampling steps; the fourth step is located in the
bottom of the net is named bottom step; the fifth to seventh steps are three upsampling
steps; and the last step is to output the two-dimensional heat map for prediction. For the
upsampling and downsampling steps, each of them contains a data processing chain: at
first a convolutional layer; then a batch normalization, a rectified linear unit layer (ReLU),
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and a 2 × 2 max pooling layer with a stride of two; and after that a max pooling layer
for the downsampling step and transposed convolution for the upsampling step. The
bottom step contains a convolutional layer, a batch normalization layer, and ReLU, and
it does not have max pooling layer or a transposed convolution layer. The last step only
has a convolutional layer. Unlike the original U-Net that contains two convolutional layers
in each step, here only one convolutional layer was used in each step, because with this
setting the network generalized better on the validation dataset. This network takes 128 ×
128 × 1050 image patches as inputs and generates a 128 × 128 image as output.
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Figure 6. U-Net architecture.

2.5.2. Experiment

In this section, the details of the experiment will be discussed, including five steps:
data preparation, data labeling, model training, thresholding, and evaluation.

Data preparation: There were in total eight specimens, of which four specimens con-
tained a damage spot caused by ballistic impact, and four measurements were considered
to be damage-free, i.e., non-impacted specimens. For each specimen, there were two dis-
tinct measurements: LWIR and MWIR. Since no temperature analysis was performed (pixel
numerical value provided by the camera is used), and conditions in the experimental room
were controlled, environmental effects on the data may be neglected. i.e., environmental
factors did not negatively affect the models, since training, validation, and test sets were
all acquired under the same conditions. Each measurement (MWIR and LWIR) is in this
case unique. Considering that if they are split into different groups, the training data
may not be able to represent the data effectively since there are few specimens available,
each measurement was at first cropped with the center point into two parts, left and right,
to double the number of available specimens. The exact data splitting is listed in Table 4
along with the training–validation–testing division (75%–12.5%–12.5%).

Table 4. Data splitting for LWIR and MWIR.

Training Data Validation Data Test Data

Specimen01 left Specimen02 right Specimen06 left
Specimen01 right Specimen05 left Specimen13 right
Specimen02 left

Specimen05 right
Specimen06 right
Specimen11 left

Specimen11 right
Specimen12 left

Specimen12 right
Specimen13 left
Specimen15 left

Specimen15 right
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Data labeling: In this case the problem is addressed with a supervised learning
approach, where the data firstly need to be labeled. All infrared sequences, in both middle
and long range spectra, were processed with PCT [23]. The generated images were then
further analyzed, and the components that exhibited better damage visualization for each
specimen were chosen. The damage regions (for impacted specimens) were then manually
identified and marked at the pixel level. The labeling was done with commercially available
image editor software. First, the boundaries of the damaged regions were carefully marked
and the region inside could be then filled with red. In this case, as there were only a few
regions to be labeled; it did not take long to finish the manual labeling. However, there are
some software tools available for labeling that could help accelerate the labeling process
when it comes to a large number of images to be labeled [37,38]. Further, for each sequence
there will be a two-dimensional binary ground truth image, where the 1s denote damaged
regions and the 0s assign damage-free regions. The labels for each damaged region are
shown for the four inspected specimens in Figure 7.

(a):PCT second component of MWIR 
sequence of specimen 1

(b):Manual labeling of defect region 
overlapping on (a)

(c):PCT third component of LWIR
sequence of specimen 5

(d):Manual labeling of defect region
overlapping on (c)

(e):PCT third component of MWIR
sequence of specimen 11

(g):PCT second component of MWIR
sequence of specimen 13

(f):Manual labeling of defect region
overlapping on (e)

(h):Manual labeling of defect region
overlapping on (g)

Figure 7. PCT results of impacted specimen and corresponding labeling.



Sensors 2021, 21, 395 11 of 18

Model training: The input data size is 128 × 128 × 1050, and the size of each mea-
surement is 288 × 384 × 1050. Each input data sequence is randomly cropped from the
measurement, and is then rotated with a random angle ranging from 0◦ to 90◦. The empty
border areas are inserted with zero values. After that, each input data sequence is normal-
ized with the following equation to guarantee that the mean value is zero, and the standard
deviation is 1.

yi,j,k =
xi,j,k − µ

σ
, (3)

where xi,j,k is the value of a voxel on one 3D input patch; µ and σ are the mean value and
standard deviation of each 3D input patch, respectively.

Since the MWIR and LWIR data for each specimen were known, a deep learning
model was trained for each wavelength. Both models were trained with back-propagation
with a learning rate of 0.002, and were trained for 10,000 iterations. The optimizer used
here was Adam [39]. The experiment was performed on a GTX 1080 Ti, and the training
process lasted about two days. The smoothed learning curves for both models were shown
in Figure 8.
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Figure 8. Learning curves during the training process.

Thresholding: The output of the U-Net model is a two-dimensional heat map, where
each pixel has a value ranging from 0 to 1 denoting the possibility degree for the damage
appearance. Before the map is compared to the ground truth image, it needs to be binarized
to get a two-dimensional binary mask. This threshold for the binarization was chosen
as 0.5.

Evaluation: After the thresholding process, for each measurement there will be a
two-dimensional binary image available. This binary image can be compare to the corre-
sponding ground truth image pixel by pixel for evaluation. The pixels belonging to the
damage region are the positive elements to be detected. Then, accuracy, recall, precision,
and F1-score for each measurement processed with deep model can be easily obtained.

2.6. Model Explainability

Deep learning methods have drawn a lot of attention from the industrial area. The
wide scale of deployments in industry, for example, has not yet been realized. One of the
main reasons is that in real applications, a rare case that the model has never seen before
might happen, and in this case the model’s behavior might be unpredictable. Another
important reason is about the deep model’s low level of transparency and explainability.
It is hard for end user to fully trust a machine that makes decision based on a black box.
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However, the deep model’s lack of explainability is due to its complexity. For example, a
typical CNN model contains multiple convolutional layers, and each layer is composed of
dozens of filters and non-linear activation functions. It is challenging to figure out every
detail in the inference process.

Due to its importance, this area has been quite actively researched in recent
years [40–43]. There are several approaches addressing this problem: visualizing in-
put patches that maximize a output unit activation [44]; the input attribution method to
highlight certain input data areas that contribute the most to a model’s decision [40,45].
In this case the layer activation method implemented in the framework Captum [46] for
Explainable AI is applied on the trained model. The layer activation method is simply
to compute the activation of each neuron in the identified layer. With this method, layer
activation at the end of each step in the U-Net is calculated and visualized. As Figures 9
and 10 demonstrate, the model tends to generate hot spots on the damaged regions. In this
way, the inner functionality can be revealed to a certain extent.

Donwsampling step 1 Donwsampling step 2 Donwsampling step 3 Bo�om step

Upsampling step 1 Upsampling step 2 Upsampling step 3 Last step

Figure 9. Layer activation maps of a trained deep model for MWIR data.

Donwsampling step 1 Donwsampling step 2 Donwsampling step 3 Bo�om step

Upsampling step 1 Upsampling step 2 Upsampling step 3 Last step

Figure 10. Layer activation maps of a trained deep model for LWIR data.

Several activation maps are shown in Figures 9 and 10. There are eight steps in total
over the network, each of which comprises convolutional layer, max pooling or transposed
convolutional layer, and a ReLU as activation function. For each step, one of the activation
maps was selected and enhanced for visualization. The eight activation maps were able to
provide an overview of the data process during both networks’ inferences (the network
for MWIR data and the network for LWIR data). The input data for both networks were
gathered from specimen 5. The data indicate that after the first step (downsampling step 1),
the input image was only seeming to be enhanced, and afterwards the network tended to
highlight the central damage spot. Right after the bottom step, the central white spot is
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the only visible object on the image, which means that the network has already detected
the damage location in early steps, and the following steps could be possibly used only to
predict the exact boundary of the damage spot. Additionally, the last step output, i.e., the
final output of the network, is a reconstructed two-dimensional heat map which describes
both the component outline and the damage location.

3. Results

The evaluation was performed on two specimens’ parts: left part of specimen 6
and right part of specimen 13 (“Specimen 06 left” and “Specimen 13 right” in Table 4
respectively, which were randomly chosen to be in the test set). Results for the model
trained with the MWIR sequences are presented in Table 5 and results for the model trained
with the LWIR sequences are presented in Table 6. “Specimen 13 right” contains a damage
region, while “Specimen 06 left” is damage-free. Accuracy, recall, precision, and F1-score
were chosen as evaluation measures. Since the damaged area was too small compared to
the whole image, accuracy alone is not the best measure to evaluate the results. Even an
accuracy of 99% may not mean an actual high performance. F1-score is a better choice to
rank the overall performance of the deep learning model. Since the left part of specimen
6 contains no damage, the recall, precision, and F1-Score are not available. However, the
classifier achieved 100%. Thus, in this case, it is feasible to use only accuracy to measure
the model’s performance.

Table 5. Deep model’s evaluation results on MWIR testing data.

Specimen 13 Right Part Specimen 06 Left Part

Threshold 0.5 0.5
Accuracy 99.96% 100.00%

Recall 93.50 % /
Precision 92.00% /
F1-score 92.74% /

Table 6. Deep model’s evaluation results on LWIR testing data.

Specimen 13 Right Part Specimen 06 Left Part

Threshold 0.5 0.5
Accuracy 99.94% 100.00%

Recall 78.86% /
Precision 97.98% /
F1-score 87.39% /

4. Discussion
4.1. PCT Analysis

Following what was described in Section 2, PT was used to inspect the specimens
listed in Table 3. Acquired data were used to train to DL models to segment impact damages
from raw PT data. However, to train and test the models, target regions, i.e., ground truth
images, should be known. In this study, PCT, a method based on SVD, was applied in
the raw sequences in order to gain knowledge on the damages present in the specimens
and further label damage regions. Thus, PCT was a intermediary step on our approach.
Nevertheless, it was useful for understanding the extent of the damages caused by the
ballistic impact in the curved specimens.

For example, specimens 5 and 11, which were submitted to more thermal shock
cycles before the ballistic impact, 300 and 500 respectively, presented a higher amount of
damage, as can be seen in Figure 7c,e. In addition to the impact damage, PCT results for
these specimens presented cracks and delamination (butterfly shape around the impacted
region). On the other hand, specimens 1 and 13, which were submitted to fewer thermal
shock cycles before the ballistic impact, 150 and 0 respectively, as shown in Figure 7a,g,
did not present the same degree of damage as specimens 5 and 11. This clearly indicates
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that the thermal shocks stressed the specimens, which made them more susceptible to the
ballistic impact.

4.2. Testing Results of Deep Models

The outputs of both networks are two-dimensional heat maps. Each location of the
map contains a value ranging from 0 to 1 indicating the likelihood of a pixel belongs to a
damaged area. The heat map is binarized with a default threshold of 0.5. The threshold is a
hyper-parameter and can be tuned before the evaluation process. Experiments indicate that
with a fine-tuned threshold value, the evaluation results can be slightly improved. However,
the fine-tuned threshold value is highly sensitive to the training epochs. and therefore
is not representative. Therefore, the center value 0.5 of the output value range [0, 1] was
chosen here in consideration of reproducibility of the work. The reason for the sensitivity
could be the lack of training samples, which would hinder the model’s generalization.

On the one hand, both deep models for MWIR data and LWIR data can recognize
the absolute damage-free area with an accuracy of 100% (on “Specimen 06 left”) with a
default threshold of 0.5. On the other hand, for the specimen containing a defect spot, both
above-mentioned models were not able to generate comparable results. The models for
MWIR data and LWIR data reached F1-scores of 92.74% and 87.39%, respectively.

However, the results are still satisfactory for the damage detection task. As is shown
in Figure 11, both models predicted the location of the damage correctly with the default
threshold. Some false positives, i.e., sound pixels classified as damage, were only detected
at the border area. The reasons could be that the sound region close to the damage region
suffered from some thermal influence by the damage during the IRT experiment, and the
manual labeling process is not 100% accurate.

(b): Red mask indica�ng ground truth for defect region
overlapping on (a)

(a): Visualiza�on of MWIR data for specimen 13 with
PCT

(c): Redmask indica�ng predic�ons of the model for 
MWIR data with default threshold 0.5 overlapping on
(a)

(d): Red mask indica�ng predic�ons of the model for
LWIR data with default threshold 0.5 overlapping on
(a)

Figure 11. Visualization of results from specimen 13: The specimen was split into left and right parts;
the left part was considered training data, and the right part was considered testing data. The green
line denotes the splitting boundary.
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4.3. Model Explainability

Though the model with U-Net architecture is able to recognize the damaged region
well, its transparency is still low, not only because of the convolutional layers containing
plenty of parameters but also because of the skip connections between the downsampling
steps and upsampling steps that have increased the complexity of the model. In this case,
the input attribution is not suitable, as it is quite intuitive that the area around the damaged
region should contribute the most to the model’s prediction. Therefore, the layer activation
method was used here to visualize the output of the each step, so that one can see how the
data are processed by the deep models. Nevertheless, this method still has some limitations,
since the explanation is in this case also quite dependent on the input data, and in some
middle steps there are up to 512 activation maps available, so it is probably not feasible to
carefully analyze each of them one by one.

5. Conclusions

NDT&E of CFRP with infrared thermography incorporating deep learning is presented
in this paper. IRT was used to inspect curved specimens in both MWIR and LWIR spectra,
and IR data were processed with PCT to acquire ground truth images used for model
training. Two deep models with U-Net architecture were trained to predict the damage
region on MWIR and LWIR, respectively. For the damage-free specimen, the model reached
high accuracy (in this case 100%). On the damaged specimen, both models were able to
correctly identify the damage. Besides, both models can also predict the damaged region’s
location with an F1-score of 92.74% on MWIR data and an F1-score of 87.39% on LWIR.

Since the model trained on MWIR data only outperformed the model trained on
LWIR data by a limited margin, both testing methods would contain sufficient latent
information to allow accurate damage detection. It is worth mentioning that during PCT
analysis, MWIR images showed better details when compared to LWIR data. It is possible
to observe in Figure 5 that the results obtained from the MWIR sequence for specimen 5
and 6 displayed clearer results. e.g., in Figure 5a we can see sharper boundaries around the
impact damage region. This implies that the latent information on LWIR data may not be
well represented by the PCT approach. Therefore, the deep learning method with U-Net
was shown to ve superior in unveiling latent relevant information in IR data compared to
the heuristic PCT method, since the F1-scores of both models are close.

After the evaluation, both models were analyzed with the layer activation method to
explain the data processing mechanisms. The layer activation map at the end of each step
was computed and visualized. Those visualized activation maps showed that both models
roughly found the damage spot location in the middle steps, whereas the exact region of
the damage spot was estimated in the last few steps. This provides an overview of what is
happening during the model’s inference, thereby improving the transparency of both deep
models with U-Net architecture. In addition, the greater damage extent revealed by PCT in
the specimens submitted to higher thermal shock cycles will be further analyzed and the
deep learning models described here will be extended to include segmentation of other
kinds of damage and their classification.
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