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Abstract
Sustainability is undoubtedly one of the most important goals in modern society 
and has a major impact on economic and political decisions. One of the strategies 
towards sustainability is the European Green Deal. A key policy initiative that 
determines the regulatory landscape supporting the European Green Deal is the 
Circular Economy Action Plan (CEAP) (EC, 2020), whose objective is to reduce the 
EU’s consumption footprint and double its circular material use rate in the coming 
decade, while boosting economic growth. Specific actions were launched in several 
areas, including electronics and ICT1, packaging, plastics and textiles. An important 
segment of a circular economy, especially in waste management, is the sorting and 
recycling of materials. To raise levels of high-quality recycling, improvements are 
needed in waste collection and sorting. 

The sensor systems currently available on the market for sorting plastics in 
waste management largely rely on near-infrared (NIR) and short-wave infrared 
(SWIR). However, the sorting of black plastics, including those manufactured in 
the automotive field, remains problematic with these systems. The task of sorting 
these black plastics from the shredder light fraction poses a demanding challenge 
to sorters.

1  Information and communications technology
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As part of the Fraunhofer lighthouse project »Waste 4 Future« (W4F), which deals 
with the holistic improvement of plastic recycling, an active thermography system 
for distinguishing different plastic materials was developed. In this context, three 
black materials from the shredder light fraction were investigated on a running 
conveyor belt. The sample set consisted of ten defined samples each of the material 
polypropylene glass fiber (PP-GF) as well as two polyamide glass fiber materials, 
namely PA6-GF and PA66-GF. The samples were heated up by using an infrared 
heater. An infrared camera mounted at a fixed distance above the conveyor belt 
was able to record the cooling curve of the samples over time. Due to their different 
heat conduction properties, different materials should have different heating, as 
well as cooling characteristics. By analyzing the cooling curves, it was possible to 
identify characteristic patterns in different materials. Feature extraction enabled the 
quantification of the observations, which were then processed by machine learning 
algorithms. Using three samples per material as validation data, a pixel-wise f1-
score above 97% was achieved. When using majority decision per sample, every 
sample could be classified without any misclassifications.

The knowledge gained from active thermography opens up promising perspectives 
for integration with the current state-of-the-art sensor technologies. Thermography 
systems can contribute to the further development of sorting systems and play 
a crucial role in improving the recycling process, especially with regard to black 
plastics. This approach can contribute to enabling more precise sorting and thereby 
more efficient recycling of plastics.

1 Introduction
Global warming and the increasing depletion of resources are major challenges 
society is facing today and in the future. In this context, the pursuit of sustainability 
has become an undeniable priority and acts as a central goal for responsible 
development. Both political and economic decisions are significantly influenced by 
the efforts to achieve these goals. To accelerate the transformation of the European 
Union towards climate neutrality and resource efficiency, the “European Green Deal” 
was launched at the beginning of 2020. One important initiative of this sustainability 
strategy is the Circular Economy Action Plan (CEAP) (EC, 2020). The CEAP 
focuses on reducing the environmental footprint within the EU and proposes various 
measures in different areas. A central aspect of this plan is the sustainable circular 
economy, which aims to minimize the consumption of resources and extend the life 
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cycle of products. The recycling of materials in particular plays a key role in this, 
which means that the recycling process is not only seen as a waste management 
strategy, but also as an essential part of realizing the goals of the CEAP. In this 
context, CEAP aims to double the use of recycled materials over the next ten years. 
This ambitious measure is intended to intensify the use of recycled raw materials 
in production and thus make a significant contribution to conserving resources and 
reducing emissions. Doubling the use of recycled material emphasizes the ongoing 
shift towards a sustainable economy and highlights the need to strengthen the 
recycling process as a central element in the circular economy.

Sorting is undoubtedly a crucial segment of an effective recycling process. The 
precise and clean separation of recyclable materials plays a key role in the process 
of increasing their usage. Accurate sorting not only enables more efficient reuse 
of materials, but also contributes significantly to improving the quality of recycled 
products. By ensuring separation by type, impurities can be minimized, which 
ultimately leads to higher quality and more versatile recycled materials. This focus 
on precision in sorting is therefore key to making the circular economy effective and 
sustainable. 

The sorting of plastics has seen significant technological advances in recent years 
(Gundupalli et al., 2017). The focus here is on near-infrared (NIR) and short-wave 
infrared (SWIR) based techniques (Chen et al., 2020; Sensors Unlimited). These 
technologies enable fast and precise identification of plastic types by analyzing the 
absorption in the respective wavelengths. However, the sorting of black plastics 
remains particularly challenging, as they are more difficult to recognize in the 
near-infrared range (Masoumi et al., 2012; Rozenstein et al., 2017). Fundamental 
research regarding the usage of terahertz waves to separate multiple black plastics 
is currently being conducted and could prove beneficial in the future (Brandt et al., 
2016). Lastly, tracer-based sorting (TBS) is already employed by some plastics 
manufacturers (Polysecure GmbH), wherein plastic additives or fluorescent 
markers are added to a compound, resulting in a separation by type and area of 
application of the plastic (e.g. food packaging) (Olscher et al., 2022). Despite all 
the progress, challenges remain, particularly due to different additives (Jehanno 
et al., 2022), multilayer packaging (Schmidt et al., 2022) and the ever-increasing 
amount of plastics that are being used (Stegmann et al., 2022). The development 
of technologies that address these challenges is crucial to increasing recycling 
efficiency and ensuring the sustainable utilization of plastic waste. 
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There exists a wide variety of analytical methods to characterize and classify 
polymers, e.g. thermogravimetric analysis (TGA) or differential scanning calorimetry 
(DSC) (Menczel & Prime, 2009). However, the use of infrared thermography to 
classify polymers is an underdeveloped field of research, but with possibly promising 
results (Aujeszky et al., 2017).

In the Fraunhofer lighthouse project »Waste 4 Future« (W4F) seven Fraunhofer 
institutes are working together to achieve a holistic improvement in the recycling 
process. The efficient utilization of carbon contained in plastics should result in 
high-quality output materials. Using an evaluation model and innovative sorting 
technology, the project aims to efficiently recycle plastics in a circular economy and 
reduce thermal utilization. Economic aspects and regulatory requirements are also 
taken into account in order to develop a sustainable business model. One part of the 
innovative sorting technology is a new approach using active thermography, which 
is explained in more detail below and the insights gained are described.

2 Active thermography
Other than in NIR spectroscopy around room temperature, infrared thermography 
in the thermal infrared range (about 2 to 15 µm wavelength) relies on the thermal 
emission of infrared radiation according to Planck’s law. Besides the temperature 
of the object, its emissivity is a decisive factor. The reflectivity plays a minor role, 
in contrast to NIR spectroscopy. Polymers appearing black in the visible absorb 
visible and NIR light very well and convert the light energy efficiently into heat and 
then into thermal radiation. Active thermography uses short-time intentional heating 
of the sample beyond its initial temperature, e. g. by a strong optical light source. 
Sample surface heating increases the infrared emission and leads to a heat flow 
from the surface into the depth of the object. The resulting increase in transient 
surface temperature is influenced by its thermal conductivity, its density, and its 
specific heat capacity. In addition, most polymers are usually semi-transparent in the 
thermal infrared. Their thermal radiation comes both from the surface and from the 
volume. A short time after optical heating, the radiation from the surface-near region 
is dominant and more dependent on the spectral properties in the thermal infrared 
than at later times (Jones Roger W. & McClelland John F., 1989), it is therefore 
useful to record the time dependence of the infrared radiation.
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By combining the effects of thermal diffusion, optical absorption, and emission of 
thermal radiation, a differentiation between different polymer materials should be 
possible. In order to accurately capture the effects described, the infrared sensor 
FLIR A35 was chosen. The operational characteristics of this camera, including 
the spectral range, were deemed sufficient to effectively fulfil the requirements. An 
overview of the technical specifications of the FLIR A35 camera can be found in 
Table 1.

Tab. 1: Thermal camera specifications

Camera type Focal Plane Array, uncooled VOX-microbolometer
Framerate 60 fps
Resolution 320 x 256 px
Spectral 7.5-13 µm
Distance camera-sample 62 cm
Thermal sensitivity NEDT 50 mK
Field of View 48 ° x 39 °

3 Design of Experiment
The implementation of a proper design of the experiment is crucial in researching 
new measurement techniques. A proper and well-thought experimental design 
ensures that the objective of the experiment is achieved with high accuracy and 
efficiency. Measuring quantities is always an integral collection of data across many 
factors. Therefore, it is important to systematically control the variables, minimize 
the biases, and enhance the statistical validity of the measurement. A disciplined 
approach increases the reproducibility of results and ensures an identification of 
causal relationships, instead of correlations.

To ensure a stable measurement setup, the configuration was carefully planned 
and mechanically secured, preventing any alterations in distances throughout the 
project. A conveyor belt is moving the samples at a constant speed. This is a critical 
aspect, enabling the construction of a cooling curve for each pixel from a sequence 
of frames. The samples are transported to an infrared heater, actively introducing 
heat. Subsequently, the samples are transported further and enter the recording 
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range of the infrared camera. By maintaining a fixed position and belt speed, 
uniform cooling times for the samples across all measurements are ensured. This 
standardized approach enhances the reliability and precision of the experimental 
outcomes. A schematic of the measurement setup is shown in the figure Fig. 1.

Fig. 1: Measurement setup schematic

With the setup being defined, it is essential to identify the most dominant influences 
that affect the whole measurement procedure. Once the influences relevant to this 
measurement have been identified, they must be classified. A list of influences 
including their categorization is shown in Fig. 2. Influencing factors are displayed 
in three different categories. The “star” marks the relevant information that is 
categorized as a measurement effect, which is the aim of the measurement. The 
wrench symbolizes influences that are marked as parameters, which means that 
they can be actively controlled by the measurement setup. The “warning sign” 
influences are non-predictable, not measurable or changing influences, and in real 
world applications especially not controllable, which can affect the measurement. In 
real-world applications, factors such as the sample geometry, ambient temperatures, 
and containments play significant roles but cannot be controlled by the sorting 
facilities. When analyzing the data, it can always happen that unknown influences 
exist, that may exhibit correlation over time. Factors like the self-heating of sensors 
or alterations in boundary conditions can influence the data over time. Additionally, 
the inherent inaccuracies in sensors contribute to what is commonly known as 
sensor scattering.
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Fig. 2: Categorized major influences that affect the measurement

In the initial phase, it is crucial to optimize the parameters and set them to their 
best possible values, so that subsequent adjustments are no longer necessary. 
This initial optimization step effectively mitigates some of the influences. All 
interfering influences are kept constant, to attempt to maintain consistency along 
all the measurements. The first series of measurements therefore is made on clean 
samples with fixed dimensions, as well as controlled sensor-, sample- and ambient 
temperature.

The selection of samples must be chosen wisely to ensure a comprehensive 
representation of the desired influences (illustrated as “star” factors). This is 
essential to account for inhomogeneities and sensor scattering. These factors are 
difficult to control by other means and must therefore be included in the training 
process. The three polymers examined in this work are black due to the addition of 
carbon black to the batch and filled with 30 % glass fiber. The samples consist of a 
polyamide 66 (PA66-GF) (TECHNYL A216 V30 BLACK 21N by DOMO Chemicals, 
Leuna, Germany), a polyamide 6 (PA6-GF) (DOMAMID 6G30 BK, also by DOMO 
Chemicals) and a polypropylene (PP-GF) (Scolefin 53 G13-9 by Ravago Group, 
Arendonk, Belgium). All polymers were injection molded in the facility of Fraunhofer 
Institute for Structural Durability and System Reliability LBF. The geometrical 
shape is composed of a square with a side length 80 mm and a thickness of 3 mm 
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and a triangle with the longest side of 90 mm. The triangular part is only used for 
numbering and touching the samples, whilst the square part is the actual analyzed 
area. This prevents measurement errors introduced by heat transfer through contact 
with the hand or by measuring the numbering of a sample instead of their cooling 
curve. An example of a sample can be seen in Fig. 3

Fig. 3: PA6-GF sample no.874

To ensure a minimum in variance between the samples, the injection molding 
process was kept running for a while before ten samples of a given material were 
produced in series. The thermal conductivity λ of the three analyzed polymers are 
shown in Table 2, taken from the matweb website (matweb).

Tab. 2: Thermal conductivity of the three analyzed polymers

Material Thermal conductivity λ[W/mK]
PA66-GF 0.24-0.25
PA6-GF 0.25
PP-GF 0.27-0.331
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Finally, in order to suppress the possible influence of temporal dependencies, a 
randomized sample sequence is selected. This approach eliminates dependencies 
in the data and contributes to a more robust and unbiased analysis.

4 Data analysis
Data analysis plays a central role in the measurement process, as it establishes a 
correlation between the measured data and the material properties. An essential 
process is preprocessing, which aims to amplify the desired effect while minimizing 
interfering influences. After pre-processing, the actual analysis is carried out using 
various machine learning (ML) techniques to identify patterns and correlate the data 
to its respective material.

4.1 Feature extraction
The conveyor belt is moving the samples at a consistent speed, and the camera 
takes frames with a constant frame rate that enables a precise calculation of the pixel 
shift, i.e. the distance traversed by the samples between the consecutive camera 
frames. As parts of the sample move out of the camera view, cooling curves are 
constructed for each pixel along the sample line by line, using a corresponding stack 
of the previously taken camera frames. The number of camera frames taken for 
each piece of the sample, i.e. the cooling curve resolution, depends on the conveyor 
belt speed and the camera frame rate. Greater resolution improves result precision, 
yet, finding a tradeoff is necessary for maximizing both the performance and the 
quality of the result. Since in most cases, the pixel shift is a non-integer number, 
linear interpolation was utilized while creating the cooling curves to enhance the 
accuracy of the results.

A polynomial fitting technique was employed to approximate the logarithmic 
temporal evolution of pixels, enabling the synthesis of data based on the resulting 
coefficients, as suggested by Shepard et al. (Shepard et al., 2001). The synthetic 
data, as shown in Fig. 4, reproduces the authentic thermal characteristics of the 
signal, effectively mitigating high-frequency noise components. Signal processing, 
e.g. the Fast Fourier Transform (FFT), performed on the synthetic data does not 
introduce additional noise, thus enhancing the efficiency of further data analysis. 
Another advantage is the reconstruction of the complete temporal evolution of a 
pixel using only the derived coefficients. This reduces storage demands and makes 
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the overall computational process more efficient, therefore playing an important role 
for time critical on-the-fly sorting of plastics. In addition, the use of synthetic data 
allows us to mitigate some other artifacts, such as camera reflections, observed in 
a circular region directly beneath the camera. The uncooled camera heats up during 
use, reaching temperatures of about 40 °C. This heat (infrared radiation) is then 
reflected on the surface of a sample and, depending on the incident angle, sent back 
into the lens of the camera. These artifacts are prominent as an erroneous elevation 
roughly in the middle of the cooling curve, i.e. in the region where the samples are 
halfway along the camera view, as illustrated in Fig. 4.

Fig. 4: Cooling curve source data and synthetic data; left: without artifacts, right: 
camera reflection artifact at frames ~60-75; a subset of the total of 136 frames

The FFT was applied to the cooling curves, as suggested by Maldague & Marinetti 
(Maldague & Marinetti, 1996) and widely adopted in related studies. The phase shift 
and amplitude information extracted via FFT helps to distinguish materials based 
on their thermal response (as shown in Fig. 5 and Fig. 6), avoiding the complexity 
of directly examining and comparing the cooling curves.

Fig. 5: FFT phase images (first frequency bin after DC) for PA66-GF, PA6-GF and PP-GF samples
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Fig. 6: FFT amplitude images (first frequency bin after DC) for PA66-GF, PA6-GF, and PP-GF samples

Different features and parameters were evaluated, considering their influence on 
the machine learning model’s effectiveness. A comparison of FFT results obtained 
using source and synthetic data proves the effectiveness of the chosen approach. 
Through a series of extensive tests involving polynomials and derivatives of different 
orders, their outcomes were systematically compared, identifying the most effective 
parameters for further analysis. In addition to FFT-related features, it has proved 
useful to calculate the relative temperature drops by putting different target frames in 
relation to the initial frame, where an example for different materials is shown in Fig. 
7. The following features were identified as the most significant and were selected 
as the input for the machine learning model:

•	 FFT amplitude (first 10 frequency bins after DC)

•	 FFT phase (first 10 frequency bins after DC)

•	 relative temperature drop for target frames 10, 20, 50, 80 and 90

•	 two polynomial coefficients (first-order polynomial in the logarithmic domain)
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Fig. 7: Relative temperature drop for PA66-GF, PA6-GF and PP-GF samples, target frame 80

Data inspection

The analysis of the data initially begins with a univariate perspective. In this particular 
case, where the potential influences are largely suppressed, a univariate approach 
already can be effective in solving the classification problem. By looking at individual 
variables in isolation, this method enables a comprehensive understanding of the 
contribution of each factor and provides valuable initial insights. With these insights, 
a foundation is established for more complex analyses and a deeper understanding 
of the underlying patterns. Fig. 8 shows the value of one feature (first amplitude of 
the FFT) for each material. This approach would already allow a partial classification. 
However, in order to obtain a more accurate and stable prediction, all available 
features should be taken into account. 
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Fig. 8: First amplitude feature A-1 extracted from all samples

To inspect the multidimensional space of the dataset, different machine learning 
methods are applied using Python (version 3.8.10) and the Scikit-learn library 
(version 1.2.2) (Pedregosa et al., 2011). A multivariate technique that can be used 
is the Principal Component Analysis (PCA) (Jolliffe, 1986). PCA is generally used for 
dimensionality reduction. However, by analyzing the newly generated components, 
this algorithm can be applied to identify the most influential factors in the data 
set. This capability enables the identification of previously unseen or unknown 
influencing factors when designing the experiment. As the PCA is unsupervised, it 
is not trained to differentiate between classes. However, observing the differentiation 
of different classes in the newly generated principal components demonstrates the 
ability of this measurement setup to achieve material separation. Fig. 9 illustrates 
the first and second principal components, visually distinguishing the classes with 
different shapes. In the figure shown, only every 60th point is displayed for visibility 
reasons. Except for outliers in the top right, the difference between PP-GF and both 
PA-GF’s is the highest influence in the dataset. 
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Fig. 9: Dataset plotted over two principal components (every 60th point for visibility)

4.2 Classification model
To create a machine learning model capable of distinguishing between three 
black plastic materials, the dataset is divided into training and validation sets. The 
validation set includes three complete samples that have been selected manually 
for each material. A pipeline is created containing a standard scaler followed by a 
linear discriminant analysis (LDA) (Fisher, 1936), which is a supervised method of 
multivariate statistics. During the training phase, the model is taught with the training 
dataset. Using the validation data, a transformation of the higher dimensional dataset 
is projected onto two new axes, called canonical variables (Fig. 10). In comparison 
to the unsupervised method (PCA) before, this projection with a supervised method 
improves the separation of the different materials. In this illustration, the classes 
are represented by different symbols. The distinction between PP-GF and the two 
PA materials is very clearly recognizable. Even PA6-GF and PA66-GF are mostly 
separable but have a slight overlap.
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Fig. 10: Projection of the validation dataset in two new canonical variables

To measure the accuracy of the predicted results, a commonly used score is the 
f1-score. The f1-score combines precision and recall, its calculation is described in 
Fig. 11 (Fawcett, 2006).
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Fig. 11: Calculation of the f1-score

As shown in Fig. 12, an averaged f1-score of 0.985 could be achieved. Challenges 
in the prediction accuracy can be observed only between the materials PA6-GF and 
PA66-GF, which have very similar physical and chemical properties. However, the 
discrimination between PA6-GF/PA66-GF and PP-GF can be performed with perfect 
precision, achieving 100% accuracy.
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Fig. 12: Classification report of the validation dataset

Since pixel-wise sorting is infeasible, a strategic approach is to make a majority 
decision for each sample. Fig. 13 shows the confusion matrices in which the pixel-
wise predictions (left) and the results obtained from majority decision per sample 
(right) are compared. The use of the majority decision method has led to an accurate 
classification of each sample.
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Fig. 13: Confusion matrices; left: pixel-wise, right: majority per sample

5 Conclusion and outlook
In this paper, an attempt has been made to classify black plastic materials (PA6-
GF, PA66-GF, PP-GF) using active thermography. A setup has been developed that 
enables stable and defined measurements. All influencing factors were identified 
and classified, with the goal of reducing unknown and unwanted influences. Through 
iteratively improved pre-processing techniques, a machine learning model was 
created that demonstrated the capability to correctly classify all validation samples. 
In doing so, it has been shown that the current state of the art in sorting plastics can 
be improved through the application of this technology.

The next steps involve using this laboratory setup and the knowledge gained to 
add more and more of the real-world influencing factors, which were previously 
excluded (most importantly: different ambient temperatures, and different sample 
geometries). A calibration and temperature correction for the acquired signals can 
be trained and performed, increasing the stability of the data. In addition, the camera 
can be substituted to allow an increase of the belt speed through a higher frame 
rate. A camera with a higher resolution can also improve the quality and precision 
of the analysis, which is important for smaller sample sizes in the future. Another 
challenge is to reduce the self-reflection effects of the camera. This can be done, 
e.g. by placing the camera at an angle instead of vertically. In this case, the recorded 
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images must be rectified using a corresponding geometric transformation. Also 
ongoing is the fusion of active thermography in the »Waste 4 Future« project into 
a demonstrator including other modalities, creating a multimodal sorter for plastic 
materials. As shown in this paper, the active thermography approach is capable of 
increasing the accuracy of classification on black plastics. 
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